
2010-11 academic year

Programming Fundamentals (21406)

Degree/study: Bachelor's degree in Computer Sciences, Bachelor's degree in Telematics
Engineering and Bachelor's degree in Audiovisual Systems Engineering
Year: 1st
Term: 2nd and 3rd
Number of ECTS credits: 8 credits
Time commitment: 200 hours
Teaching language or languages: catalan and spanish
Teaching Staff: Jesús Ibañez

1. Presentation of the subject

Programming Fundamentals is part of a set of subjects about algorithmics and programming
carried out in the first and second year of the bachelor's degrees in Computer Sciences,
Telematics Engineering and Audiovisual Systems Engineering. For this first subject of the set, it
is assumed that students have no prior knowledge about algorithmics and programming. In this
course the foundations of algorithmics, of the data structures and of the programming in C
language are also established. During the subjects called Object-Oriented Programming and
Structure of Data and Algorithms (first term of the second year) the skills acquired here will be
studied deeply, so at the end of the first term of the second year students will have to be able
to develop programs with a considerable size using appropriate data structures, in an
imperative way and in an object-oriented way. It is also important to note that the
fundamentals acquired in Programming Fundamentals are essential to implement the practical
part of many subjects of the degree.

The learning activities are mainly divided into different categories depending on their type:
- Lectures: teachers explain a series of concepts and techniques, and also examples of its use.
Students must revise teacher's explanations and their own notes out of the classroom to
assimilate the contents.
- Seminar sessions: students must solve a series of small activities, putting into practice the
concepts and techniques explained in the lectures. These activities will begin in computer
classrooms and will have to be finished out of the classroom.
- Practical sessions: students have to solve some larger problems than the exercises mentioned
above, so they must decide which concepts and techniques they have to use in each case.
These activities will begin in computer classrooms and they have to be finished out of the
classroom. Moreover, in practical sessions students learn how to use programming tools.
- Self-assessment exercises: exercises to help students to check if they have assimilated the
concepts and techniques presented at the end of each unit. This activity is carried out by
students out of the classroom.

2. Previous requirements to follow the formative itinerary

This course doesn't require previous knowledge on programming or algorithmics. To carry out
some exercises it is required some knowledge on mathematics learnt in high school.

3. Competences to be obtained in the subject

The main objective of this subject is that students acquire the fundamentals of algorithmics and
data structures, as well as they learn to create fluently medium size programs using C
language.
This chapter details what students are expected to have learned once the subject is finished.

Page 1 of 12Programming Fundamentals

15/12/2011http://cms.upf.edu/cmsUPF/opencms/Web/en/2011/3377/21406.html

First, the general competences refer to skills not directly related to programming itself, but to a
professional context of an engineer. The specific competences refer to aspects of the subject.

3.1. General competences

Instrumental
- CG1: Capacity to synthesise
Students should be able to write solutions with the essential elements, in a simple and elegant
way and as efficiently as possible.
- CG2: Capacity of analysis
Students should be able, based on a specific problem, to analyze it and propose appropriate
solutions.
Systemic
- CG3: Capacity to put knowledge into practice
Students should be able to apply knowledge acquired to solve specific problems, choosing the
technique that best suits each case.
- CG4: Interest in quality
Students should be able to have a code that is, apart from efficient, easy to read and maintain.
It is also important to properly document both in the same code and in a report.

3.2. Specific competences

- CE1: Capacity to work with programming tools
Students should be able to work with the basic programming tools: a compiler and a debugger.
They must be able to work with a programming editor and an IDE. This competence is essential
for a proper development of the others.
- CE2: Control the basic and complex static data types
Students should be able to distinguish the different types of basic and complex static data and
decide the appropriate type in each specific situation.
- CE3: Control control structures
Students should be able to distinguish the different complex control structures and decide the
most appropriate to solve specific problems.
- CE4: Capacity to solve problems through descendant design and the control of the use of
functions and libraries.
Students should be able to solve problems of more complexity using descendant design
techniques. Specially, students must understand the operation of function calls and parameters
pass and they must control the use and creation of libraries, and they must be able to divide a
problem into the appropriate units.
- CE5: Control of dynamic data types and dynamic memory management
Students must understand the mechanism of memory management, as well as the use of
pointers and dynamic control of data structures. It is also included the treatment of text files.
- CE6: Documentation and code structure
Students must acquire the habit of structuring and documenting code properly in order to
facilitate further readings.
- CE7: Capacity to read (quickly) code in C
Students should be able to understand code written by other programmers, quickly.
- CE8: Control of algorithmics fundamental elements
Students should know and be able to apply properly the fundamental concepts of algorithms,
such as recursion and searching and sorting algorithms.
- CE9: Capacity of algorithm analysis
Students should know the notation and the mechanisms of the analysis of algorithmic
complexity, and must be able to calculate the run time of a program.

4. Contents

Unit 1: Introduction and general concepts

Page 2 of 12Programming Fundamentals

15/12/2011http://cms.upf.edu/cmsUPF/opencms/Web/en/2011/3377/21406.html

Concepts Procedures

- Short history about programming and its
languages and paradigms
- Compilation and interpretation mechanisms
- Difference between program and algorithm

Unit 2: Basic data types

Concepts Procedures

- Variables and constants
- Basic data types:
 - Numeric types
 - Characters
 - Booleans

- Declaration of constants and variables of
different types

Unit 3: Expressions, sentences and control structures

Concepts Procedures

- Expression creation
- Introduction to Boolean logic
- Sentences or instructions:
 - Assignations
 - Input/output operations
 - Operators precedence order
- Control structures:
 - Conditional structures
 - Iterative structures

- Expression evaluation
- Resolution of small problems using
appropriate sentences and control structures

Unit 4: The functional decomposition and the descendant design

Concepts Procedures

- Descendant design
- Declaration of functions
- Parameter definition
- Function calls and parameters pass
- Void type

- Division of problems into subproblems
- Resolution of small problems defining the
functions properly

Unit 5: Complex static data types

Concepts Procedures

Page 3 of 12Programming Fundamentals

15/12/2011http://cms.upf.edu/cmsUPF/opencms/Web/en/2011/3377/21406.html

- One-dimension arrays
- Multi-dimension arrays
- Strings or character strings
- Structures (structs)

- Resolution of small problems about typical
operations with each of the data types

Unit 6: Declaration of own types

Concepts Procedures

- Structure types
- Type definition by typedef
- Type conversions

- Resolution of small definition problems of
own data types

Unit 7: Pointers and dynamic memory management

Concepts Procedures

- Pointers declaration
- Operations of direction and indirection
- Value assignation to pointers
- Null pointer
- Reference parameters pass
- Arrays and pointers in C

- Resolution of small problems about typical
operations with pointers
- Resolution of small typical problems of
arrays using pointers

Unit 8: The functional decomposition and the descendant design (part II)

Concepts Procedures

- Reference parameters pass
- Main function and its arguments
- Visibility and scope
- The libraries and the processor

- Resolution of problems by decomposition
using functions with reference parameters

Unit 9: Text files

Concepts Procedures

- The file type (FILE)
- Operations with files:
 - Open
 - Close
 - Write
 - Read
- Standard input/output

- Resolution of small problems about typical
operations with text files

Page 4 of 12Programming Fundamentals

15/12/2011http://cms.upf.edu/cmsUPF/opencms/Web/en/2011/3377/21406.html

Unit 10: Style and good practices

Concepts Procedures

- Style, legibility and obfuscation
- Good practices
- Common errors
- Code analysis
- Depuration

- Resolution of problems of error detection
and style improvement.
- Use of code analysis and depuration tools.

Unit 11: Functional decomposition and descendant design (part III)

Concepts Procedures

- Library programming
- Segmentation of the code into files
- Header files

- Resolution of problems of creation and use
of libraries

Unit 12: Search and sorting algorithms

Concepts Procedures

- Lineal and binary search
- Basic sorting algorithms
 - Bubble
 - Insertion
 - Selection

- Resolution of problems about search and
sorting algorithms

Unit 13: Recursivity

Concepts Procedures

- Recursivity concept
- Recursive algorithms
- Base case and recurrence
- Pros and cons
- Direct and indirect recursivity
- Transformation into iterative algorithms
- Specific examples of recursive algorithms
(fractals, Hanoi towers, Quicksort, etc)

- Resolution of problems by the definition of
recursive functions

Unit 14: Algorithm analysis

Concepts Procedures

Page 5 of 12Programming Fundamentals

15/12/2011http://cms.upf.edu/cmsUPF/opencms/Web/en/2011/3377/21406.html

- Program run time
- Asymptotic notation
- Run time calculation

- Resolution of calculation problems and
comparison of programs run time

5. Learning methodology

The normal learning process of a unit begins with a lecture where some theoretical and practical
fundamentals are presented. This activity takes place in a large group of students. Students
must then complete this activity with a careful reading of the notes. For example, a typical
lecture that lasts 2 hours, properly used, will need an autonomous 1-hour work out of the
classroom.
Then one or some seminar sessions or practical sessions take place. In the seminar sessions
students put into practice the concepts and techniques presented in the lectures, by
implementing programs to solve small problems. The aim is that students consolidate the
fundamentals to later carry out more complex problems. This activity must be done individually,
in a group of about 15 students. Each activity of this kind is planed to last about 4 hours, 2 of
which are done with the help of the teacher. The first activities of the session, with solutions
offered by the teacher, must be solved before going into the classroom. The teacher can
request a hand-in of one of the activities proposed at the end of each session.
In the practical sessions some more complex problems are proposed, especially in the 3
evaluable practical activities, which require a preliminary design of the solution that will be
implemented and which integrates different concepts and techniques. In the final practical
exercise all the specific skills that students must acquire in this subject are joined. Each of
these activities of this type is performed by couples, in a group of about 30 students, and they
must continue out of the classroom.
In each practical and seminar session, some time is devoted to discuss the main problems
presented in the previous session.
The last step of the unit is to solve self-assessment exercises by which students can check that
they have acquired the skills evaluated later in the partial and final exams.

5.1. Learning units

Unit 1: First steps: introduction, basic data types and control structures

Units Learning activities

Unit 1: Introduction and
general concepts

Unit 2: Basic data types

Unit 3: Expressions,
sentences and control
structures

Lectures Seminar
sessions

Practical
sessions

Self-
assessment

T1, T2 and T3 S1 P1 A1

Time commitment of unit 1: 17 hours (10 in the classroom, 7 out of the classroom)

Details about activities:
- Lecture T1. 3 hours (2 in the classroom, 1 out of the classroom): short history of
programming and explanation of compilation and interpreting models.
- Lectures T2 and T3. 6 hours (each session: 2 in the classroom, 1 out of the classroom):
explanation of basic data types and main examples of use. Explanation of basic sentences and
expressions creation with the main examples of its use. Conditional and iterative control
structures and main examples of its use.
- Seminar session S1. 4 hours (2 in the classroom, 2 out of the classroom): activities on

Page 6 of 12Programming Fundamentals

15/12/2011http://cms.upf.edu/cmsUPF/opencms/Web/en/2011/3377/21406.html

expressions and conditional and iterative control structures creation.
- Practical session P1. 3 hours (2 in the classroom, 1 out of the classroom): it will be explained
how to install a compiler, and how to edit, compile and run a program. The students will be
given small programs with errors because they get used of the typical error messages of the
compiler.
- Self-assessment A1. 1 hour (out of the classroom): resolution of self-assessment activities
about expressions and control structures creation.

Unit 2: Functions and descendant design

Units Learning activities

Unit 4: The functional
decomposition and the
descendant design

Lectures Seminar
sessions

Practical
sessions

Self-
assessment

T4 S2 A2

Time commitment unit 2: 8 hours (4 in the classroom, 4 out of the classroom)

Details about activities:
- Lecture T4. 3 hours (2 in the classroom, 1 out of the classroom): explanation on descendant
design fundamentals, as well as the function definition and the call mechanism and value
parameters pass, with examples of its use.
- Seminar session S2. 4 hours (2 in the classroom, 2 out of the classroom): activities about
descendant design and value parameters pass.
- Self-assessment A2. 1 hour (out of the classroom): Resolution of self-assessment activities
about functions and value parameters pass.

Unit 3: Complex static dada types and type declaration

Units Learning activities

Unit 5: Complex static data
types

Unit 6: Declaration of own
types

Lectures Seminar
sessions

Practical
sessions

Self-
assessment

T5 and T6 S3 P2 and P3 A3

Time commitment unit 3: 29 hours (10 in the classroom, 19 out of the classroom)

Details about activities:
- Lectures T5 and T6. 6 hours (each session 2 in the classroom, 1 out of the classroom):
explanation of complex data types (arrays, strings and structures) with examples of use.
Explanation of the definition of own data types by the programmer, with examples of use.
- Seminar session S3. 4 hours (2 in the classroom, 2 out of the classroom): activities about
complex data types.
- Practical sessions P2 and P3 (first evaluated practical activity). 18 hours (each, 2 in the
classroom, 7 out of the classroom): students must solve (programming in C) medium-size
problems, using arrays, strings and structures and, in some cases, defining the own types. It
includes the creation of an explicative work report.
- Self-assessment A3. 1 hour (out of the classroom): Resolution of self-assessment activities on
complex data types.

Unit 4: Pointers and parameters pass

Units Learning activities

Page 7 of 12Programming Fundamentals

15/12/2011http://cms.upf.edu/cmsUPF/opencms/Web/en/2011/3377/21406.html

Unit 7: Pointers and dynamic
memory management

Unit 8: The functional
decomposition and the
descendant design (part II)

Lectures Seminar
sessions

Practical
sessions

Self-
assessment

T7 and T8 S4 P4 A4

Time commitment unit 4: 18 hours (8 in the classroom, 10 out of the classroom)

Details of activities:
- Lectures T7 and T8. 8 hours (each session 2 in the classroom, 2 out of the classroom):
explanation on the operation of pointers with examples of use. Explanation on reference
parameters pass with examples of use. Explanation on the visibility norms.
- Seminar session S4. 4 hours (2 in the classroom, 2 out of the classroom): activities on
pointers and reference parameters pass.
- Practical session P4. 5 hours (2 in the classroom, 3 out of the classroom): students must
solve (programming in C) some small problems, using pointers and reference parameters pass.
- Self-assessment A4. 1 hour (out of the classroom): Resolution of self-assessment activities
about pointers and reference parameters pass.

Unit 5: Text files

Units Learning activities

Unit 9: Text files Lectures Seminar
sessions

Practical
sessions

Self-
assessment

T9 S5 A5

Time commitment unit 5: 8 hours (4 in the classroom, 4 out of the classroom)

Details of activities:
- Lecture T9. 3 hours (2 in the classroom, 1 out of the classroom): explanation on text files and
examples of use.
- Seminar session S5. 4 hours (2 in the classroom, 2 out of the classroom): Activities on text
files.
- Self-assessment A5. 1 hour (out of the classroom): Resolution of self-assessment activities on
files.

Unit 6: Good practices and library programming

Units Learning activities

Unit 10: Style and good
practices

Unit 11: Functional
decomposition and
descendant design (part III)

Lectures Seminar
sessions

Practical
sessions

Self-
assessment

T10 and T11 P5, P6, P7
and P8

A6

Time commitment unit 6: 33 hours (12 in the classroom, 21 out of the classroom)

Details of activities:
- Lecture T10. 3 hours (2 in the classroom, 1 out of the classroom): explanation on good
practices to program in readable way and obtain programs with fewer errors. Explanation on
common errors while codifying a program. Explanation on analysis techniques and code

Page 8 of 12Programming Fundamentals

15/12/2011http://cms.upf.edu/cmsUPF/opencms/Web/en/2011/3377/21406.html

depuration.
- Lecture T11. 3 hours (2 in the classroom, 1 out of the classroom): explanation on the process
of library creation and code segmentation in some files. Review of visibility norms.
- Practical session P5. 4 hours (2 in the classroom, 2 out of the classroom): students will start
to use an IDE and it will be explained how to debug a program using the IDE. Students will
debug some programs.
- Practical session P6. 4 hours (2 in the classroom, 2 out of the classroom): it will be explained
how to create a complex program of several modules (or files) using an IDE. Students will
create a program divided into several modules.
- Practical sessions P7 and P8 (second evaluated practical activity). 18 hours (each session, 2 in
the classroom, 7 out of the classroom): students must solve (programming in C) complex
problems that integrate pointers, reference parameters pass, text files and segmentation of
code into several files. The resolution must be programmed according the recommendations of
good practices. It includes the creation of an explicative work report.
- Self-assessment A6. 1 hour (out of the classroom): Resolution of self-assessment activities
about style, good practices, and segmentation of code into modules or files.

Unit 7: Search, sorting and recursivity

Units Learning activities

Unit 12: Search and sorting
algorithms

Unit 13: Recursivity

Lectures Seminar
sessions

Practical
sessions

Self-
assessment

T12, T13, T14
and T15

S6 and S7 A7

Time commitment unit 7: 24 hours (12 in the classroom, 12 out of the classroom)

Details of activities:
- Lecture T12. 3 hours (2 in the classroom, 1 out of the classroom): explanation on binary and
lineal search algorithms, as well as basic sorting algorithms (bubble, insertion and selection).
- Lectures T13, T14 and T15. 12 hours (T13, 2 in the classroom, 2 out of the classroom; T14, 2
in the classroom, 3 out of the classroom; T15, 2 in the classroom and 1 out of the classroom):
explanation on the recursivity concept. Explanation of the fundamentals of recursive algorithms
and its pros and cons. Explanation of the different types of recursivity. Explanation of the
transformation of recursive algorithms into iterative algorithms. Discussion on some specific
examples of algorithms.
- Seminar session S6. 4 hours (2 in the classroom, 2 out of the classroom): Activities on search
algorithms, sorting algorithms and recursive algorithms.
- Seminar session S7. 4 hours (2 in the classroom, 2 out of the classroom): Activities on
recursive algorithms.
- Self-assessment A7. 1 hour (out of the classroom): Resolution of self-assessment activities on
search algorithms, sorting algorithms and recursivity.

Unit 8: Algorithm analysis

Units Learning activities

Unit 14: Algorithm analysis

Lectures Seminar
sessions

Practical
sessions

Self-
assessment

T16, T17 and
T18

S8 P9 and P10 A7

Time commitment unit 8: 33 hours (12 in the classroom, 21 out of the classroom)

Page 9 of 12Programming Fundamentals

15/12/2011http://cms.upf.edu/cmsUPF/opencms/Web/en/2011/3377/21406.html

Details of activities:
- Lectures T16 and T17. 7 hours (T16, 2 in the classroom, 2 out of the classroom; T17, 2 in the
classroom, 1 out of the classroom): explanation on implied factors of the efficiency of an
algorithm. Explanation of the asymptotic notation. Explanation of the procedures to calculate
the run time of an algorithm, with illustrating examples.
- Lecture T18. 3 hours (2 in the classroom, 1 out of the classroom): general review and doubt
resolution.
- Seminar session S8. 4 hours (2 in the classroom, 2 out of the classroom): Activities on the
analysis of the complexity of algorithms.
- Practical sessions P9 and P10 (third evaluated practical activity). 18 hours (each session, 2 in
the classroom, 7 out of the classroom): students have to solve (programming in C) a complex
problem that integrates all the concepts and techniques of the subject (including recursive
algorithms and algorithmic complexity analysis). The solution must be programmed according
to the recommendations of good practices. It includes the creation of an explicative work
report.
- Self-assessment A8. 1 hour (out of the classroom): Resolution of self-assessment activities
about algorithm complexity analysis.
- Important: apart from the planned working hours which are described above, students must
dedicate 10 hours (8.5+1.5) to prepare and take the partial examination, and 20 (17.5+2.5)
hours for the final exam.
- Total time commitment: 200 hours (76 in the classroom, 124 out of the classroom)

6. Avaluation

6.1. General evaluation criteria

This course consists of two main parts:
- Theoretical and practical fundamentals, which include activities related to the lectures and
seminars
- Practical activities
Each of these parts represents 50% of the final mark, but the students have to pass both parts
to pass the subject.

Theoretical and practical fundamentals
- There will be two examinations, one in the middle of the subject (at the end of the second
term) and another one at the end of the subject (at the end of the third term). The first one
means a 25% of the mark and it is focused on the activities done during second term practical
sessions. The second exam is 75% of the mark and covers practical and theoretical topics of
the whole subject.

- In the seminar sessions, teachers will review students' work during all the term, and they can
ask for a hand-in of an activity at the end of each session. Based on these reviews and hands-
in, the mark of the theoretical and practical fundamentals can increase (but never decrease) at
maximum 1,5 points.

- Furthermore, some self-assessment activities are planned, one at the end of each unit, so that
students can assess their progress. These activities consist of a series of multiple-choice
questions, similar to the exams. Also, in seminar activities, students can also evaluate their
progress by comparing their solutions with the results given. In any case, these self-
assessment activities do not affect the mark of the subject.

Practical activities
- The mark of this part is obtained from three activities to hand in, distributed throughout the
subject. Each of these practices has the same value in the mark (i.e., each evaluable practical
activity represents 33.3%). Regarding the practical activities mark, apart from the overall
assessment, teachers will be able to review the progress in the work of students throughout the
practical sessions. If a group does not do this review, or if this review is not satisfactory, its
students must defend the practical activity after their hand-in.

Page 10 of 12Programming Fundamentals

15/12/2011http://cms.upf.edu/cmsUPF/opencms/Web/en/2011/3377/21406.html

- Apart from the activities to hand-in, other practical activities will be useful for students to
evaluate their progress. These activities do not affect the mark.

September examination sitting
- In the case that students do not pass both parts in the June sitting, it will only be kept one
part passed in case that the mark of the other part is equal or greater than 3. Otherwise,
students must retake the examination and they have to hand in a new practical activity (with
different instructions).

6.2. Concretion

First evaluated practical activity
- It will be evaluated the resolution of a practical activity in which students can show the degree
of assimilation of concepts and skills acquired during the first third of the course. In particular,
the skills assessed will be CE2, CE3 and certain aspects of CE4 and CE6 (code structure
discussed above). The practical activity consists of solving a problem, including its analysis and
programming of an appropriate solution in C language. Students must choose static data
structures as well as the operations flow of the solution and perform a simple descendant
design. It will also be assessed the four general competences defined.

Second evaluated practical activity
- It will be assessed the resolution of a practice in which students can show the degree of
assimilation of concepts and skills acquired during the first two thirds of the course, especially
during the second. In particular, the skills assessed will be CE2, CE3, CE4, CE5 and CE6. The
practical activity consists of solving a complex problem, including its analysis, the choice of
appropriate data structures (static and dynamic ones), the descending design, the planning of
an adequate solution in C (following recommendations of good practices) and their proper
documentation in a report where it will also be justified the decisions taken. It will also be
assessed the four general competences defined.

Third evaluated practical activity
- It will be assessed the resolution of a practical activity in which students can show the degree
of assimilation of concepts and skills acquired throughout the subject. In particular, the skills
assessed will be CE2, CE3, CE4, CE5, CE6, CE8 and CE9. The practical activity consists of
solving a complex problem, including its analysis, the choice of appropriate data structures
(static and dynamic ones), the descendant design, the planning of an appropriate solution in C
(following the recommendations of good practices) and their proper documentation in a report
where it also be justified the decisions taken and which will include a part of analysis of the
algorithmic complexity. The four general competences defined will also be assessed.

Partial examination
- It will be evaluated the understanding and application of concepts and techniques acquired
during the first half of the subject (second term). In particular, the skills assessed will be CE2,
CE3, CE4, CE5 and especially CE7. The evaluation method involves an examination of
approximately 20 multiple-choice questions with four options for each question with only one
correct answer. Questions will be taken (with small modifications) from the proposals for
practical sessions and self-assessment activities. The evaluation will take place during the
examination period of the second term.

Final examination
- It will be evaluated the understanding and application of concepts learnt throughout the whole
course in small programs. In particular, the skills assessed will be CE2, CE3, CE4, CE5, CE7,
CE8 and CE9. The evaluation method involves an examination of approximately 30 multiple-
choice questions with four options for each question with only one correct answer. The
evaluation will take place during the examination period of the third term.

Page 11 of 12Programming Fundamentals

15/12/2011http://cms.upf.edu/cmsUPF/opencms/Web/en/2011/3377/21406.html

7. Bibliography and teaching resources

7.1. Basic bibliography

- Toni Navarrete Terrasa. Introducción a la programación con lenguaje C.
- Jesús Bisbal Riera. Manual d'algorísmica: Recursivitat, complexitat i disseny d'algorismes.
Editorial UOC. ISBN: 978-84-9788-570-6
- Brian W. Kernighan, Dennis M. Ritchie: El lenguaje de programación C. Segunda edición.
Prentice-Hall. ISBN: 968-880-205-0

7.2 Learning information resources. Additional bibliography.

Other books about C:
- Herbert Schildt: C Manual de referencia. Mc Graw Hill. 84-481-0335-1
- James L. Antonakos, Kenneth C. Mansfield Jr.: Programación estructurada en C. Prentice-Hall.
ISBN: 84-89660-23-9
- Marco A. Peña, José M. Cela: Introducción a la programación en C. Edicions UPF. ISBN: 84-
8301-429-7
- Luis Joyanes, Ignacio Zahonero: Programación en C. Mc Graw Hill. ISBN: 84-481-3013-8
- Félix García, Jesús Carretero, Javier Fernández, Alejandro Calderón: El lenguaje de
programación C. Diseño e implementación de programas. Prentice-Hall. ISBN: 84-205-3178-2
- P.J. Plauger, Jim Brodie: C Estándar. Guía de referencia rápida para programadores. Anaya.
ISBN: 84-7614-264-1

Other "classical" books on algorithmics (more complex):
- Alfred V. Aho, Jeffrey D. Ullman, John E. Hopcroft: Estructuras de datos y algoritmos. Addison
Wesley, 1988. ISBN: 968-444-345-5
- Niklaus Wirth: Algoritmos + estructuras de datos = programas. Ediciones del Castillo, 1980.
ISBN: 84-219-0172-9
- Niklaus Wirth: Algoritmia y estructuras de datos. Prentice Hall, 1987. ISBN: 968-880-113-5
- D.E. Knuth: El arte de programar ordenadores (3 volums). Editoria Reverté. ISBN: 84-291-
2661-9
- Terrence W. Pratt, Marvin V. Zelkowitz: Lenguajes de programación. Diseño e
implementación. Prentice Hall, 3ª edic., 1997. ISBN: 970-17-0046-5
- G. Brassard, P. Bratley: Fundamentos de algoritmia. Prentice-Hall. ISBN: 84-89660-00-X

7.3 Didactic resources. Subject learning material.

In Aula Moodle of the subject (Aula Global) it will be uploaded the learning material of the
subject. In particular:
- Notes
- Instructions for the seminar sessions
- Instructions for the practical sessions
- Self-assessment activities

Page 12 of 12Programming Fundamentals

15/12/2011http://cms.upf.edu/cmsUPF/opencms/Web/en/2011/3377/21406.html

