

 Curs 2010-11
21595 Fundamentals of Programming

Degree: Bachelor’s degree in Computer Engineering, Bachelor’s degree in Telecommunications Network
Engineering and Bachelor’s degree in Audiovisual Systems Engineering
Course: first
Trimester: second and third
Number of ECTS credits: 8 crèdits
Hours of student dedication: 200 hours
Language or teaching languages: Catalan and
Spanish
Teacher:

1. Presentation of the subject

Fundamentals of Programming is integrated into a block of subjects on algorithmics and programming that
are carried out in the first and second year of the Degree in Computer Engineering, Degree in Telematics
Engineering and Degree in Audiovisual Systems Engineering. For this first subject of the block it is
assumed that students do not have previous knowledge about algorithmics and programming. Within this
subject, the bases of the algorithmic, data structures and programming in C language are also
established. In the subjects Object Oriented and Data Structures and Algorithm Programming (first
quarter of the second year) It will be deepened in the competences acquired here, so that at the end of
the first quarter of the second year students must be able to develop programs of considerable size with
the appropriate data structures, both imperatively and object-oriented. It is also important to note that
the bases acquired in Programming Fundamentals are essential in order to implement the practical part of
many subjects throughout the studies.

Learning activities have been divided into different categories essentially based on their typology:

• theory sessions: professors present a series of concepts and techniques, apart from examples of their use.
Students will have to review the notes and their notes outside the classroom to finish assimilating the
contents.

• seminar sessions: students must solve a series of small exercises, putting into practice the concepts and
techniques presented in the theory sessions. These activities begin in computer classrooms, and they must
be completed outside the classroom.

• practical sessions: students have to solve problems more broadly than the aforementioned exercises, so
they must decide which concepts and techniques they should use in each case. These activities begin in
computer classrooms, and they must be completed outside the classroom. In addition, in the practical
sessions students learn to use the programming tools.

• self-evaluation exercises: exercises so that students, at the end of each didactic unit, verify that
the concepts and techniques presented have been assimilated. This activity is carried out by
students outside the classroom.

2. Prerequisites for the follow-up of the training itinerary

This subject does not require any prior programming or algorithmic knowledge. In order to carry out
some exercises, the knowledge of maths of the baccalaureate level is required.

3. Skills to be achieved
The main objective of this subject is that students acquire the bases of the algorithmic and data
structures, as well as that they are able to develop medium-sized programs fluently using the C
language.

This chapter details what students are expected to have learned after completing the course. First of all,
the general competences refer to skills not directly related to the programming itself, but to the
professional field of an engineer. The specific competences are those that refer to aspects of the subject.

3.1. General competences

Instrumental
CG1: Capacity for synthesis
Students must be able to write solutions with the essential elements, in a simple, elegant and more
efficient way.

CG2: Capacity for analysis
Students must be able to, from a specific problem, analyze it and propose suitable solutions.

Systemic
CG3: Capacity to apply knowledge in practice
Students must be able to apply the knowledge acquired to solve specific problems, choosing the
technique that best suits each case.

CG4: Interest in quality
Students must be able to have their code, as well as efficient, easy to read and maintain. It is also
important that you document correctly, both within the same code and in a memory.

3.2. Specific competences

CE1: Capacity to work with programming tools
Students must be able to work with the basic tools of the programming: a compiler and a debug. In
addition, you must be able to work with a programming editor and an integrated development
environment. This competence is essential for the correct development of others.

CE2: Domain of basic and composite static data types
Students must be able to distinguish the different types of basic and composite static data and to decide
the appropriate type in each specific situation.

CE3: Domain of control structures
Students must be able to distinguish the different control structures and decide the most suitable to solve
specific problems.

CE4: Ability to solve problems through downward design and mastery of the use of functions and libraries
Students must be able to solve problems of considerable complexity using down-design techniques. In
particular, students must understand the function calls and parameter steps, they must master the use
and creation of bookstores, and they should be able to divide a problem into the appropriate units.

CE5: Domain of dynamic data types and dynamic memory management
Students must understand the memory management mechanism, as well as the use of pointers and
dynamic control of data structures. The processing of text files is also included.

CE6: Documentation and code structure
Students must acquire the habit of structuring and documenting the code properly in order to facilitate
their subsequent reading.

CE7: Ability to read (fast) code in C
Students must be able to understand code written by other programmers, relatively quickly.

CE8: Domain of the fundamental elements of algorithm
Students must know and be able to apply the fundamental concepts of algorithmics in a suitable way,
such as recursion and search and sort algorithms.

CE9: Capacity to analyze algorithms
Students must know the notation and mechanisms of the analysis of algorithmic complexity, and they
must be able to calculate the execution time of a program.

4. Contents

Block 1: Introduction and general concepts

Concepts Procedures

- Brief history of programming and its
languages and paradigms
- Mechanisms of compilation and
interpretation
- Difference between program and
algorithm

Block 2: Basic data types

Concepts Procedures

- Variables and constants - Declaration of constants and variables of the
different types

- The different types of basic data:
- Numeric types

- Characters

- Boolean

Block 3: Expressions, sentences and control structures

Concepts Procedures

- Formation of expressions
- Introduction to Boolean logic
- Sistencies or instructions:

- Assignments
- Input and exit operations
- The order of precedence of the operators

- The control structures:
- The conditional structures
- Iterative structures

- Evaluation of expressions
- Resolution of small problems using the sentences and
adequate control structures

Block 4: Functional decomposition and downward design

Concepts Procedures

- Downward design
- Declaration of functions
- Definition of parameters
- Function calls and parameters pass
- The void type

- Decomposition of problems in subproblems
- Resolution of small problems by defining functions
appropriately

Block 5: Types of static composite data

Concepts Procedures

- One-dimensional arrays
- Multidimensional arrays
- Strings or character strings
- Structures (structs)

- Resolution of small problems with the typical
operations with each type of data

Block 6: Declaration of own types

Concepts Procedures

- The types of structures
- Definition of typedef types
- Type conversions

- Resolution of small problems of definition of own data
types

Block 7: The pointers and the dynamic management of memory

Concepts Procedures

- Declaration of pointers
- Direction and indirection operations
- Assignment of securities to pointers
- The null pointer
- Parameter step by reference
- Arrays and pointers in C

- Resolution of small problems with the typical
operations with pointers
- Resolution of small typical problems of
arrays using pointers

Block 8: Functional decomposition and downward design (second part)

Concepts Procedures

- Parameter step by reference
- The main function and its arguments
- Visibility and scope
- Bookstores and preprocessor

- Resolution of problems by decomposition using
functions with parameters by reference

Block 9: Text files

Concepts Procedures

- The file type (FILE)
- File operations:

- Open
- Close
- Write
- Read

- Standard input and output

- Resolution of small problems on typical operations
with text files

Block 10: Style and good practices

Concepts Procedures

- Style, readability and obfuscation
- Best practices
- Common errors
- Code analysis
- Debugging

- Troubleshoot error detection and style improvement.
- Use of code analysis and debugging tools.

Block 11: Functional decomposition and downward design (third part)

Concepts Procedures

- Library programming
- Segmentation of the code in files
- Header files

- Resolution of problems creating and using libraries.

Block 12: Search and sorting algorithms

Concepts Procedures

- Linear and binary search - Resolution of problems on search and sort algorithms
- Basic sorting algorithms

- Bubble

- Insertion

- Selection

Block 13: Recursion

Concepts Procedures

- Recursion concept
- Recursive algorithms
- Base case and recurrence
- Advantages and disadvantages
- Direct and indirect recursion
- Transformation to iterative algorithms

- Specific examples of recursive algorithms
(fractals, towers of Hanoi, Quicksort, etc.)

- Problem solving by defining recursive functions

Bloc 14: Anàlisi d'algorismes

Concepts Procedures

- Runtime of a program
- Asymptotic notation
- Execution time calculation

- Resolution of computation problems and comparison
of program run time

5. Evaluation

5.1. General evaluation criteria

This subject consists of two main parts:

• Theoretical-practical foundations, which encompass the activities related to the theory and seminar sessions

• Practices

Each one represents 50% of the final grade, although it is necessary to approve the two parts to pass the
subject.

Theoretical-practical foundations

There will be two exams, one in the middle of the subject (at the end of the second trimester) and
another at the end (at the end of the third trimester). The first one represents 25% of the note and
focuses on the block of exercises carried out in the sessions of exercises in the second quarter. The
second exam represents the remaining 75% and covers theoretical and practical questions of the whole
course.In the sessions of the sessions, the professors will review the work of the students throughout the
quarter, and may request the delivery of an exercise at the end of each session. Depending on these
revisions and deliveries, the note can be uploaded (but never lowered) from the theoretical-practical basis
up to 1.5 points.

In addition, several self-assessment activities have been programmed, one at the end of each didactic
unit, with the aim of the students evaluating their progress.

These activities consist of a series of multiple-choice test questions, of a level similar to those of the
exams. Also, in seminar activities students can also assess their progress, comparing their solutions with
the published results. In any case, these self-assessment activities do not affect the note.

Practices

The note of this part is obtained from three deductible practices, distributed throughout the course. Each of
these practices has the same weight in the note (that is, each evaluable practice has a weight of 33.3%).
Regarding the grade of deductible practices, apart from the overall assessment, teachers will be able to
review progress in the work of the students, throughout the practical sessions. In the event that a group does
not make this review, or that this review is not satisfactory, you must make a defense of the practice practice
after its delivery.

Apart from the delivering practices, the other practices will help students to evaluate their progress. These
activities do not affect the note.

Recovery in September
In the case of not approving the two parts in the June exam, only one approved part will be saved in
September in case the note of the other party is equal to or greater than 3. Otherwise, it will have to be
returned to take the exam and deliver a new practice (with a different statement).

5.2. Concretion

First evaluable practice

The resolution of a practice in which the student will be able to show the degree of assimilation of the
concepts and competences acquired during the first third of the subject will be evaluated. In particular, the
competences CE2, CE3 and certain aspects of CE4 and CE6 (commenting code structuring) will be
evaluated. The practice will be to solve a problem, including its analysis and the programming of a suitable
solution in C language. The student will have to decide on the static data structures as well as the solution
flow of the solution and perform a simple downward design. Likewise, the four general competences defined
will be valued.

Second practice evaluable
The resolution of a practice in which the student will be able to show the degree of assimilation of the
concepts and competences acquired during the first two thirds of the subject, and especially during the
second, will be evaluated. In particular, the competences CE2, CE3, CE4, CE5 and CE6 will be assessed. The
practice will consist of solving a considerably complex problem, including its analysis, choosing the
appropriate (static and dynamic) data structures, downward design, programming an appropriate C
language solution (following the recommendations of good practices) and its correct documentation in a
report in which the decisions adopted will also be justified. Likewise, the four general competences defined
will be valued.

Third practice evaluable
The resolution of a practice in which the student will be able to show the degree of assimilation of the
concepts and competences acquired throughout the course will be evaluated. In particular, the
competences CE2, CE3, CE4, CE5, CE6, CE8 and CE9 will be evaluated. The practice will consist of
solving a considerably complex problem, including its analysis, the choice of adequate (static and
dynamic) data structures, downward design, programming of a suitable C language solution (following
the recommendations of good practices) and its correct documentation in a memory in which the
decisions adopted will also be justified and where a part of analysis of the algorithmic complexity will be
included. Likewise, the four general competences defined will be valued.

Midterm exam
The understanding and application of the concepts and techniques acquired during the first half of the
subject (corresponding to the second quarter) will be evaluated. Specifically, the CE2, CE3, CE4, CE5 and
CE7 competencies will be evaluated. The assessment method consists of a test test of approximately 20
questions with 4 options for each question with only one valid answer. The questions will be extracted
(with small modifications) of the proposals for the sessions of exercises and of the activities of self-
evaluation. The assessment will take place during the second trimester exams period.

Final exam
The understanding and application of the concepts acquired throughout the entire subject in small
programs will be evaluated. Specifically, the competences CE2, CE3, CE4, CE5, CE7, CE8 and CE9 will be

assessed. The assessment method consists of a test type of approximately 30 questions with 4 options
for each question with only one valid answer. The assessment will take place during the period of
examinations of the third quarter.

6. Bibliography and didactic resources

6.1. Basic bibliography

· Toni Navarrete Terrasa. Introducción a la programación con lenguaje C.
· Jesús Bisbal Riera. Manual d'algorísmica: Recursivitat, complexitat i disseny d'algorismes. Editorial UOC.
ISBN: 978-84-9788-570-6
. Brian W. Kernighan, Dennis M. Ritchie: El lenguaje de programación C. Segunda edición. Prentice-Hall.
ISBN: 968-880-205-0

6.2. Bibliographie complémentaire

Other books about C:

· Herbert Schildt: C Manual de referencia. Mc Graw Hill. 84-481-0335-1
· James L. Antonakos, Kenneth C. Mansfield Jr.: Programación estructurada en C. Prentice-Hall. ISBN: 84-
89660-23-9
· Marco A. Peña, José M. Cela: Introducción a la programación en C. Edicions UPF. ISBN: 84-8301-429-7
· Luis Joyanes, Ignacio Zahonero: Programación en C. Mc Graw Hill. ISBN: 84-481-3013-8
· Félix García, Jesús Carretero, Javier Fernández, Alejandro Calderón: El lenguaje de programación C.
Diseño e implementación de programas. Prentice-Hall. ISBN: 84-205-3178-2
· P.J. Plauger, Jim Brodie: C Estándar. Guía de referencia rápida para programadores. Anaya. ISBN: 84-
7614-264-1

Other "classic" algorithmic books (more advanced):

· Alfred V. Aho, Jeffrey D. Ullman, John E. Hopcroft: Estructuras de datos y algoritmos. Addison Wesley,
1988. ISBN: 968-444-345-5
· Niklaus Wirth: Algoritmos + estructuras de datos = programas. Ediciones del Castillo, 1980. ISBN: 84-
219-0172-9
· Niklaus Wirth: Algoritmia y estructuras de datos. Prentice Hall, 1987. ISBN: 968-880-113-5
· D.E. Knuth: El arte de programar ordenadores (3 volums). Editoria Reverté. ISBN: 84-291-2661-9
· Terrence W. Pratt, Marvin V. Zelkowitz: Lenguajes de programación. Diseño e implementación. Prentice
Hall, 3ª edic., 1997. ISBN: 970-17-0046-5
. G. Brassard, P. Bratley: Fundamentos de algoritmia. Prentice-Hall. ISBN: 84-89660-00-X

6.3. Didactics resources

In the Moodle classroom of the subject (in the Classroom Global) will be uploaded the teaching material of the
subject. In particular they will upload:
- Notes
- Annotated for the seminar sessions
- Annotated for the practical sessions
- Self-evaluation exercises

7. Methodology

The usual process of learning in a teaching unit begins with a theory session where some theoretical-practical
foundations are presented. This activity is carried out in a large group of students. Students will have to
complete this activity later with a careful reading of the notes. For example, a typical 2-hour theory session,
conveniently utilized, will need a personal work outside the classroom for 1 hour.

Next, one or several sessions of seminars and / or practicals are carried out. In seminar sessions, students
put into practice the concepts and techniques presented in the theory session, through the implementation
of programs to solve small problems. The objective is for students to consolidate the foundations so that
later they can carry out bigger problems.

This activity is done individually, in a group of about 15 students. Each activity of this type is programmed
with a duration of 4 hours, of which 2 are done with the help of the teacher. The first exercises of the session,
for which the solutions are offered, must be resolved before arriving in the classroom. The teacher may

request the delivery of one of the exercises proposed at the end of each session.

In practical sessions, greater problems are proposed, especially in the 3 evaluable practices, which require
a prior design of the solution that will be implemented and which integrate different concepts and techniques.
In the last practice, all the specific competences that students must acquire in this subject meet. Each
activity of this type is done in pairs, in a group of about 30 students, and must continue outside the
classroom.

In each session of seminars and internships, it is time to discuss the main problems that have been presented
in the previous session.

The last step of the teaching unit is the resolution of some self-assessment exercises through which students
can verify they have acquired the competences that will later be evaluated through the partial and final
exams.

7.1. Didactic units

Didactic unit 1: First steps: introduction, basic data types and control structures

Content blocks Learning activities

1: Introduction and general
concepts

2: Basic data types

3: Expressions, sentences
and control structures

Sessions of
Theory

Seminar
sessions

Practical
sessions

Self-evaluation

T1, T2 and T3 S1 P1 A1

Total dedication Didactic Unit 1: 17 hours (10 in the classroom, 7 outside)
Details of the activities:
T1 theory session. 3 hours (2 in the classroom, 1 outside): brief history of the programming and explanation
of the models of compilation and interpretation.
T2 and T3 theory sessions. 6 hours (for each session 2 in the classroom, 1 outside): explanation of the types
of basic data and main examples of use. Explanation of the formation of expressions and basic sentences with
the main examples of its use. Conditional and iterative control structures and main examples of its use.
S1 seminar session. 4 hours (2 in the classroom, 2 outside): exercises on expressions formation and
conditional and iterative control structures.
Practical session P1. 3 hours (2 in the classroom, 1 outside): will explain how to install the compiler, and how
to edit, compile and execute a program. Small bug programs will be given to students to become accustomed
to typical compiler error messages.
Self-assessment A1. 1 hour (outside the classroom): resolution of self-assessment exercises on expression
formation and control structures.

Didactic unit 2: Functions and descending design

Content blocks Activitats d'aprenentatge

4:Functional
decomposition and
descending design

Sessions of
Theory

Seminar
sessions

Practical
sessions

Self-evaluation

T4 S2

A2

Total dedication Didactic Unit 2: 8 hours (4 in the classroom, 4 outside) Details of the activities:
T4 theory session. 3 hours (2 in the classroom, 1 outside): explanation of the basis of the descending design
as well as the definition of functions and the mechanism of call and passage of parameters by value, with
examples of use.
Seminar S2 session. 4 hours (2 in the classroom, 2 outside): exercises on descending design and step of
parameters by value.
Self-assessment A2. 1 hour (outside the classroom): Resolution of self-evaluation exercises on functions and
step of parameters by value.

Didactic unit 3: Types of static composite data and type declaration

Content blocks Learning activities

5: Types of static composite
data

6: Declaration of own types

Sessions of
Theory

Seminar
sessions

Practical
sessions

Self-evaluation

T5 and T6 S3 P2 and P3 A3

Total dedication Didactic Unit 3: 29 hours (10 in the classroom, 19 outside) Details of the activities:
T5 and T6 theory sessions. 6 hours (for each session 2 in the classroom, 1 outside): explanation of the types
of compound data (arrays, chains and structures) with examples of use. Explanation of the definition of data
types by the developer, with examples of use.
Seminar S3 session. 4 hours (2 in the classroom, 2 outside): exercises on compound data types.
Practical sessions P2 and P3 (first evaluable practice). 18 hours (for each session, 2 in the classroom, 7
outside): the student must solve (programming in C) some average problems, using arrays, chains and
structures, and in some cases defining their own types. Includes the preparation of an explanatory report of
the work.
Self evaluation A3. 1 hour (outside the classroom): Resolution of self-assessment exercises on compound
data types.

Didactic unit 4: Pointers and step parameters by reference

Content blocks Learning activities

7: The pointers and the
dynamic management of
memory

8: Functional decomposition
and downward design
(second part)

Sessions of
Theory

Seminar
sessions

Practical
sessions

Self-evaluation

T7 and T8 S4 P4 A4

Total dedication Didactic Unit 4: 18 hours (8 in the classroom, 10 outside) Details of the activities:
T7 and T8 theory sessions. 8 hours (for each session 2 in the classroom, 2 outside): explanation of the
operation of pointers with examples of use. Explanation of the step of parameters by reference with examples
of use. Explanation of the visibility rules.
Seminar S4 session. 4 hours (2 in the classroom, 2 outside): exercises on pointers and step of parameters by
reference.
P4 practice session. 5 hours (2 in the classroom, 3 outside): the student must solve (programming in C)
some small problems, using pointers and passage of parameters by reference.
Self evaluation A4. 1 hour (outside the classroom): Resolution of self-assessment exercises on pointers and
step of parameters by reference.

Didactic unit 5: Text files

Content blocks Learning activities

9: Text files Sessions of
Theory

Seminar
sessions

Practical
sessions

Self-evaluation

T9 S5

A5

Total dedication Didactic Unit 5: 8 hours (4 in the classroom, 4 outside) Details of the activities:

T9 theory session. 3 hours (2 in the classroom, 1 outside): explanation of the text files and examples of use.
Seminar S5 session. 4 hours (2 in the classroom, 2 outside): Exercises on text files.

Self evaluation A5. 1 hour (outside the classroom): Resolution of self-evaluation exercises on files.

Didactic unit 6: Good practices and programming of libraries

Content blocks Learning activities

10: Style and good practices

11: Functional
decomposition and
downward design (third
part)

Sessions of
Theory

Seminar
sessions

Practical
sessions

Self-evaluation

T10 and T11

P5, P6, P7
and P8

A6

Total dedication Didactic Unit 6: 33 hours (12 in the classroom, 21 outside) Details of the activities:
T10 theory session. 3 hours (2 in the classroom, 1 outside): explanation of best practices for programming
readably and obtaining programs less prone to errors. Explanation of common errors when coding a program.
Explanation of code analysis and debugging techniques.
T11 theory session. 3 hours (2 in the classroom, 1 outside): explanation of the process of creating libraries
and code segmentation in several files. Review of visibility rules.
Practical session P5. 4 hours (2 in the classroom, 2 outside): an integrated development environment will
begin to be used and will explain how to debug a program using the development environment. Students will
debug several programs.
Practical session P6. 4 hours (2 in the classroom, 2 outside): will explain how to create a program composed
of several modules (or files) using an integrated development environment. Students will create a program
divided into several modules.
Practical sessions P7 and P8 (second evaluable practice). 18 hours (for each session, 2 in the classroom, 7
forums): the student must solve (programming in C) a problem of considerable size that integrates pointers,
step of parameters by reference, text files and segmentation of the code in several files. The solution must be
programmed following the recommendations of good practices. Includes the preparation of an explanatory
report of the work.

Self evaluation A6. 1 hour (outside the classroom): Resolution of self-assessment exercises about style, good
practices, and segmentation of the code in modules or files.

Didactic unit 7: Search, ordering and recursion

Content blocks Learning activities

12: Search and sorting
algorithms

13: Recursion

Sessions of
Theory

Seminar
sessions

Practical
sessions

Self-evaluation

T12, T13, T14
and T15

S6 and S7

A7

Total dedication Didactic Unit 7: 24 hours (12 in the classroom, 12 outside) Details of the activities:
T12 theory session. 3 hours (2 in the classroom, 1 outside): explanation of the linear and binary search
algorithms, as well as the basic sorting algorithms (bubble, insertion and selection).
Theory sessions T13, T14 and T15. 12 hours (T13 2 in the classroom, 2 outside, T14 2 in the classroom, 3
outside, T15 2 in the classroom and 1 outside): explanation of the recursion concept. Explanation of the
bases of recursive algorithms and their advantages and disadvantages. Explanation of the different types of
recursion. Explanation of the transformation of recursive algorithms to iterative algorithms. Discussion of
several concrete examples of recursive algorithms.

Seminar S6. 4 hours (2 in the classroom, 2 outside): Exercises on search algorithms, sort algorithms and
recursive algorithms.
S7 seminar session. 4 hours (2 in the classroom, 2 outside): Exercises on recursive algorithms.
Self evaluation A7. 1 hour (outside the classroom): Resolution of self-assessment exercises on search
algorithms, sorting algorithms and recursion.

Didactic unit 8: Analysis of algorithms

Content blocks Learning activities

14: Anàlisi d'algoritmes Sessions of
Theory

Seminar
sessions

Practical
sessions

Self-evaluation

T16, T17 i
T18

S8 P9 i P10 A7

Total dedication Didactic Unit 8: 33 hours (12 in the classroom, 21 outside) Details of the activities:

T16 and T17 theory sessions. 7 hours (T16 2 in the classroom, 2 outside; T17 2 in the classroom, 1 outside):
explanation of the factors involved in the efficiency of an algorithm. Explanation of asymptotic notation.
Explanation of the procedures to calculate the execution time of an algorithm, with illustrative examples.

T18 theory session. 3 hours (2 in the classroom, 1 outside): general review and resolution of doubts.

Seminar S8. 4 hours (2 in the classroom, 2 outside): Exercises on the analysis of the complexity of
algorithms.

Practical sessions P9 and P10 (third practical assessment). 18 hours (for each session, 2 in the classroom, 7
forums): the student must solve (programming in C) a problem of considerable size that integrates all the
concepts and techniques of the subject (including recursive algorithms and analysis of the algorithmic
complexity). The solution must be programmed following the recommendations of good practices. Includes
the preparation of an explanatory report of the work.

Self evaluation A8. 1 hour (outside the classroom): Resolution of self-assessment exercises on the analysis of
the complexity of algorithms.

Note: in addition to the hours of work planned and indicated in the description of the didactic units, 10 hours
(8.5 + 1.5) are reserved to prepare and carry out the partial exam, and 20 (17.5 + 2.5) hours for the final
exam.

Total dedication of the subject: 200 hours (76 in the classroom, 124 outside)

8. Programming of activities

8.1. Hours of dedication of the students

Activity

Hours in the classroom

Hours
outside the
classroom

Large
group

Medium
group

Small
group

Didactic unit 1 T1 2

1

T2 2

1

P1

2

1

T3 2

1

S1

2 2

A1

1

Didactic unit 2 T4 2

1

S2

2 2

A2

1

Didactic unit 3 T5 2

1

S3

2 2

T6 2

1

P2

2

7

P3

2

7

A3

1

Didactic unit 4 T7 2

2

S4

2 2

T8 2

2

P4

2

3

A4

1

Didactic unit 5 T9 2

1

S5

2 2

A5

1

Didactic unit 6 T10 2

1

P5

2

2

T11 2

1

 P6 2 2

P7

2

7

P8

2

7

A6

1

Didactic unit 7 T12 2

1

T13 2

2

T14 2

3

S6

2 2

T15 2

1

S7

2 2

A7

1

Didactic unit 8 T16 2

2

T17 2

1

S8

2 2

P9

2

7

T18 2

1

P10

2

7

A8

1

Exams Midterm 1,5

8,5

Final 2,5

17,5

Total

40 20 16 124 200 (ECTS * 25)

8.2 Programming of face-to-face sessions
In this section tables with the programming of the sessions are included. In the tables, the sessions T are
of theory, S are of seminary, and P are of practices. Keep in mind that, for each group, half of your
seminar subgroups have one-day seminar sessions, and the other half has one

another day different On the other hand, all the practice subgroups of each group have the practice
sessions the same day and at the same time, although each subgroup has them in a different classroom.
To see the classrooms for each session, see:

http://www.upf.edu/esup/docencia/graus/http://www.upf.edu/esup/docencia/graus/

