Llicenciatura en Ciències Polítiques i de l'Administració (3334)
Probabilitat(12176)
OBJECTIUS
Aquesta assignatura pretén introduir els estudiants als conceptes i al llenguatge propis de la probabilitat i, alhora, mostrar-los-en la seva utilitat en el plantejament i l'anàlisi de molts problemes relacionats amb la ciència política. Es comença amb els conceptes de probabilitat, esperança i probabilitat condicionada, per passar tot seguit als conceptes de variable aleatòria i distribució de probabilitat. Finalment, s'estudien en detall algunes de les distribucions de probabilitat més importants, entre elles la binomial i la normal. Es treballarà a partir de l'estudi de casos i s'ensenyarà a utilitzar un programa estadístic.
TEMARI DE LES SESSIONS TEÒRIQUES
Tema 1. Probabilitat: conceptes bàsics
- 1.1. Fenòmens aleatoris. Espai mostral i àlgebra d'esdeveniments.
- 1.2. La llei dels grans nombres.
- 1.3. Probabilitat. Interpretacions freqüencialista, axiomàtica i subjectiva.
- 1.4. Regles de càlcul de probabilitats.
- 1.5. Eines per comptar: els nombres combinatoris.
Tema 2. Probabilitat condicionada
- 2.1. Definició de probabilitat condicionada.
- 2.2. La fórmula del producte.
- 2.3. Independència entre esdeveniments.
- 2.4. El teorema de Bayes.
- 2.5. Exemples.
Tema 3. Variables aleatòries discretes
- 3.1. Variable aleatòria discreta.
- 3.2. Distribució de probabilitat.
- 3.3. Esperança matemàtica.
- 3.4. Variància i desviació estàndard.
Tema 4. Distribucions de probabilitat discretes: la distribució binomial
- 4.1. Distribució uniforme.
- 4.2. Distribució de Bernoulli.
- 4.3. Distribució binomial.
Tema 5. Variables aleatòries contínues
- 5.1. Variable aleatòria contínua.
- 5.2. Funció de densitat i funció de distribució.
- 5.3. Mitjana i variància.
Tema 6. Distribucions de probabilitat contínues
- 6.1. Distribució uniforme.
- 6.2. Distribució normal.
- 6.3. Distribució normal estàndard. Estandardització d'una variable.
- 6.4. Aproximació normal de la distribució binomial.
TEMARI DE LES SESSIONS PRÀCTIQUES
Les classes de pràctiques de la primera part del curs consistiran en una introducció al programa estadístic Minitab. A continuació s'utilitzarà aquest programa per simular distribucions de probabilitat i per assimilar-ne les propietats. Finalment, en la darrera part del curs, durant les sessions pràctiques que es faran a l'aula d'informàtica es resoldran problemes de probabilitat aplicats.
AVALUACIÓ
Cada setmana els alumnes hauran de presentar resolts els problemes del full d'exercicis que se'ls haurà lliurat prèviament. La qualificació obtinguda en aquests exercicis serà un 10% de la nota final.
A meitat del trimestre es realitzarà un examen parcial. La qualificació obtinguda en l'examen parcial serà un 20% de la nota final.
A final de trimestre es realitzarà un examen global, la qualificació del qual serà un 70% de la nota final.
Per tant, un alumne superarà l'assignatura si la suma del 10% de la nota dels exercicis setmanals, més el 20% de la nota de l'examen parcial, més el 70% de la nota de l'examen final, és igual o superior a cinc punts.
Bibliografia
Bibliografia bàsica
FELLER, W. Introducción a la teoría de probabilidades y sus aplicaciones. Mèxic: Limusa, 1973. Vol. I.
ISAAC, R. The Pleasures of Probability. Nova York: Springer-Verlag, 1995.
LARSON, Harold J. Introducción a la teoría de probabilidades e inferencia estadística. Mèxic: Limusa, 1992.
MOORE, David S. Statistics: Concepts and Controversies. Nova York: W. H. Freeman and Company, 1991. Capítol 8.
Bibliografia de referència
GASTWIRTH, Joseph L. Statistical Reasoning in Law and Public Policy. Boston: Academic Press Inc., 1988.
DE GROOT, Morris H. Probabilidad y estadística. Wilmington (Del.): Addison-Wesley, 1988.